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S U M M A R Y  
An attempt is made to locate the non-linear sources inside the cochlea. The possible sources can be divided in several 
classes : of no significance are the perilymph, the endolymph and the impedances of Reissner's membrane and the 
basilar membrane; of little significance is the motion of the mentioned membranes in their own plane ; of uncertain 
significance are the oval window impedance and the spiral coiling of the cochlea, while the mechanism of tectorial 
membrane, haircells and organ of Corti is likely to be an important source of non-linearity. Moreover the widely used 
membrane equation is improved in the course of the work. 

1. Introduction* 

Although in many cases the cochlea may be regarded as a linear system, a number of non-linear 
phenomena have been observed. Whereas older theories suggested that the non-linearities 
could be located in the middle ear or in the nervous system, it is now recognised, owing to 
experiments of notably Goldstein [-6] and Rhode [-9], that their source lies inside the cochlea. 

Several authors, e.g. Hubbard and Geisler [-7], try to explain these phenomena by introducing 
a non-linearity and computing its effects, but they do not justify their choice, so that the results, 
though in good agreement with the observations, remain questionable. We have investigated 
non-linearities that do have a physical background. The first is the quadratic velocity term in 
the equation of motion of the perilymph, which will be considered in the Sections 2 and 3. 
Secondly we have examined the partition. It is shown in Section 4 that it is impossible to draw 
conclusions as to its non-linear conduct under the hypothesis that the partition behaves as a 
single membrane, although experiments of Von B6k6sy [1, 2] seem to justify this assumption, 
since according to them all parts of the scala media are in phase. We have dropped the sup- 
position of membranelike action. Reissner's membrane, the endolymph and the basilar 
membrane are considered separately, whilst moreover endolymph velocity components 
parallel to the basilar membrane are taken into account. In this way we find an alternative for 
the equation of motion of the partition. From this equation we can deduce the weight that mass, 
resistance and stiffness carry in relation to the non-linearities, as well as the influence of the 
mentioned velocity components. 

2. Sources within the perilymph; the non-viscous case 

The continuity equation for a compressible fluid can be written as 

0p 
0 t  + V.(pv) = 0,  (2.1) 

where v is the velocity in and p the density of the fluid; t is the time variable. 
Many workers (see e.g. [4, 14]) have shown that the compressibility of the perilymph is 

negligible for small frequencies, while its influence remains small for high frequencies (~ 10 4 Hz). 
An other reason for ignoring the compressibility is that the occurrence of the non-linearities was 
found to be frequency-independent. Therefore, one often considers the fluid as incompressible; 

* For a description of the cochlea we refer to [2, 8, 14]. 
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then (2.1) simplifies to 

V.v = 0.  (2.2) 

Denote the fluid pressure by p. Then the equation of motion reads 

0v 
p ~ + p(v.V)v+Vp = 0.  (2.3) 

Here, the viscosity of the fluid has been disregarded; in Section 3 we will treat the viscous case. 
In [,-13] the order of magnitude of the left hand terms in (2.3) is investigated. With an input 

transmembrane pressure of 1 dyn/cm 2, the velocity is shown to be smaller than 10- 2 cm/s, while 
its spatial derivatives do not exceed the value of 10-1 c.g.s.-units. Thus the second term is of 
order 10-3 dyn/cm3 ; the first and the third term however are both of order 1 dyn/cm 3. The 
ratio of the order of magnitude of the non-linear effects and that of the linear phenomena is 
larger than 10-2, according to experiments concerning non-linearities (see e.g. [-6, 9] ). There- 
fore the second left hand term of (2.3) is negligible. To illustrate this result, we shall investigate 
in the sequel the introduction of non-linear terms in the Peterson-Bogert model [-8]. The model 
is characterized by the assumption that long waves develop in the cochlea as a consequence of 
oval window excitation by the stapes. This means that the wavelength is large compared with 
the cross-sectional dimensions of the cochlea. As a result of this the pressure p and the velocity 
v of the fluid particles are homogeneous over a cross-section of a scala. Actually this holds to a 
good approximation only for frequencies < 1 kHz (see [-12]). Moreover it was assumed that 
non-linear effects can be ignored and that the deflection of the partition is completely deter- 
mined by the pressure difference between the two channels. 

Maintaining the two other hypotheses of the Peterson-Bogert model we shall investigate 
here the effect of retaining the non-linearities in the equation of motion and in the continuity 
equation. The fluid is considered as compressible. 

The continuity equation, given by (2.1), is integrated over a control volume V enclosed by a 
surface S; n is the outward unit normal on S. We find, utilizing the divergence theorem of 
Gauss : 

v ~ d V  + s (pv)'ndS = 0.  (2.4) 

Consider a control volume in the scala vestibuli as drawn in Fig. 1. Since the model is basically 
one-dimensional, we introduce only the axial coordinate x (x = 0 at the helicotrema, x = L at 
the windows). The width of the partition is b(x), while A(x) is the cross-section of a scala. In 
the figure A~ an bx stand for dA/dx and db/dx respectively. 

Assume that the displacement of the partition is so small that the resulting changes in $1 and 
V are negligible; hence $1 =bdx and V=Adx.  We define the density p~,(x, t) and the axial 
velocity usv(x, t), both homogeneous over the cross-section of the scala vestibuli, and further 
w(x, t), the vertical displacement of the partition, reckoned positive in case of a motion in the 

V 

Figure 1. 
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direction of the scala tympani. Using these concepts, (2.4) leads to 

Op~, 0 
A W + bp~w + U~ (Ap~,u=) = O. (2.5) 

Now suppose that in the cochlea the pressure p is a function of the density p only, which 
holds for most fluids. Then we can define a(p), the velocity of sound in the perilymph, by 

d p = a2 (2.6) 
dp 

We assume that a(p) is constant; this is correct with a very high degree of accuracy. Let Po be 
the average value of p and Po the corresponding pressure. Then we can write 

1 
P = Po + ~ (P-Po). (2.7) 

Denote by p~(x; t) the pressure in the scala vestibuli. It is homogeneous over a cross-section 
like p~, and usv. By means of (2.6) and (2.7) we change (2.5) into 

1 [ (~p~ 0~x ] ~ (Aus~)=O (2.8) aT A ~ -  + b(p~-po)w + {A(P~-P~ + p~176 ~x 

The equation of motion for the scala vestibuli is found from (2.3). Using once more (2.6) and 
(2.7) it reads 

(P v-Po) + �89 + Po + = O. (2.9) 

The analogues of (2.8) and (2.9) for the scala tympani are: 

11  ps, ] 0/A.s,/=0 t210t A ~t-  + b(p~ + ~xx {A(P~'-P~ - p~176 ~x 

I ~blst 0 2 ]  ~Ust ~ 1 2  (2.11) ~ (P~t-Po) ~ -  + �89 ~xx u~t + Po ~ -  + ~x (Pst+2p~ = O. 

Here, P~t and u~t are the values of pressure and axial velocity, homogeneous over the cross- 
section of the scala tympani. It has been assumed for the sake of simplicity only that the cross- 
sections of the channels are equal. This is in good agreement with reality, except for the neigh- 
bourhood (~- 0.3 cm) of the windows. It is clear that x is also the axial coordinate for the scala 
tympani. 

The system is completed by the membrane equation 

f P~v-Pst = m ~ + kw+c wdt , (2.12) 

in which m(x), k(x) and c(x) are mass, resistance and stiffness of the partition per unit area. 
We need boundary and initial values to solve this system in the unknowns psv, P~t, u~, u~t 

and w. 
In the linear case the initial conditions could be avoided by the restriction to harmonic 

oscillations. The same approach would be unsatisfactory here, inasmuch as the response of the 
quantities involved is not harmonic because of the non-linear terms. It is possible however, on 
account of the external force (oval window excitation by the stapes), to regard the cochlea at 
rest at t = 0. This hypothesis determines the initial conditions. Of the four necessary boundary 
conditions, two are given at the helicotrema, where both the pressure difference and the axial 
flux are zero, so that 

p~(O, t)-ps,(O, t) = 0 ,  (2.13) 

us~(O, t)+u~t(O, t) = 0.  (2.14) 
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The latter equation can be written in this simple form because the scalae have equal cross- 
sections. The two other conditions can be either Psv (L, t) and Pst (L, t) prescribed [12], or known 
impedances of oval and round window [10], or a mixture of these, e.g. psv(L, t ) -ps t (L,  t) and 
round window impedance known [5, 7, 8]. Until now there has not been any doubt as to the 
linearity of these values ; we assume that they are not non-linear sources (see Section 5). With 
the aforesaid conditions the system (2.8)-(2.12) can be resolved. 

We want to investigate the suggestion that the effects of the non-linearities on Psi, Psi, Us~, 
Ust and w are merely consequences of the compressibility of the fluid. To this end we consider 
the incompressible case (a = oe); then the system (2.8)-(2.12) simplifies considerably. After the 
introduction of the variables p+, p_, u+ and u_ by 

p + (x, t) = Ps~ (x, t)+ Pst (x, t ) ,  

p_ (x, t) = Ps~ (x, t)--Pst (x, t) , 

u+ (,,, t) = u= 04 t )+  us,(x, t) ,  
u_ (x, t) = u,~ (x, t ) - -u , ,  (x, t ) ,  

it can be written in the following way: 

(2.15) 
(2.1.6) 
(2.17) 
(2.18) 

0~ (Au + ) = O, (2.19) 

c3x (Au_)+ 2bw = 0 ,  (2.20) 

#u+ 
P 0 ~ - + ~ [ P + + ~ p 0 ( u - t  2+u+)]2 = 0 ,  (221) 

0u O 
Po - ~ -  + ffxx (p-  + l p ~  u+) = 0,  (2.22) 

0w f p_ = m ~ t  + k w + c  w d t .  (2.23) 

From (2.14) and (2.19) it is derived that 

u+ (x, t) = 0.  (2.24) 

Hence (2.21) and (2.22) simplify to 

- -  + ~ p o u _ )  = O ,  0x (p+ 1 2 (2.25) 

~?u_ 0p_ 
Po ~ T  + ~?x = 0.  (2.26) 

From (2.20), (2.23) and (2.26) we can findp_, u_ and w by regarding harmonic oscillations and 
solving the remaining ordinary differential equations with the help of boundary conditions 
(2.13) and for instance p_ (L, t) known. Subsequently p+ can be computed from (2.25): 

p+ = - �88 u2 _ + F(t) , (2.27) 

in which F(t) is an unknown function that has to be determined from the boundary conditions. 
We see that p_, u_ and w are completely linear, as well as of course u + ; p + is non-linear. 

Yet this does not contradict our former statement that the non-linearities investigated in this 
section are negligible. Above all it is obvious that p+ is almost linear, since the first term on 
the right-hand side in (2.27) is very small because of the small velocities in the cochlea. Moreover 
we are interested mainly in the deflection of the partition in which p+ does not play a part. 
The non-linearities in the equation of motion and in the continuity equation are thus clearly 
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compressibility effects. The compressibility of the perilymph is small. It can even be ignored at 
low and middle-high frequencies (<  7 kHz, see [5]). The non-linearities are therefore small 
effects of a small quantity. Hence they cannot be a satisfactory explanation for the non-linear 
behaviour of the cochlea. 

3. Sources within the perilymph; the viscous case 

In Section 2 the influence of non-linear sources within the perilymph has been investigated 
under the neglect of the viscosity of the perilymph. This quantity has been examined already 
by the authors in [14]. Its principal effect is the existence of a boundary layer along the walls 
and the membrane. The entire viscous force is localized in this layer, while the main flow is 
considered as inviscid. The same approach will be used here. The reason is that the order of 
magnitude of the non=linear term can be considerably larger in the layer than in the inviscid 
perilymph, since v and especially the derivative of the axial velocity in the direction perpendic- 
ular to the walls c.q. the membrane wilt reach much higher values because of the no-slip 
condition. 

The fluid is regarded as incompressible on account of the insignificance of the compressibility 
as has been noted already in the previous section. Then the equation of motion is 

0v 
P ~ i  + p ( v ' V ) v + V p - I ~ A v  : 0 ,  (3.1) 

where # is the coefficient of viscosity. 
Decompose p and v in an inviscid part (Po, Vo) and a perturbation (Pl, vl) as a consequence 

of the viscosity. It follows that 

(v~ + Vl) -t- p ((v 0 -t- Vl)' V)(v 0 + t, 1)-t- V (P0 -t- P l ) -  aA (go -t- vl) = 0 (3.2) P 0t 

For the main flow the equation of an inviscid fluid holds : 

c3v o 
P - ~ t  + p ( v o ' V ) v o + V p o  = 0.  (3.3) 

It is not necessary to assume a priori that the mainflow is irrotational; since it is supposed, 
however, in the course of the derivation that the cochlea was at rest at t = 0, we can set A v o = 0 
at once as well. For, the vorticity of a vortex tube is unchanged during the motion, as has been 
posed already by Helmholtz. Hence Vxvo=O.  Moreover V . v o = 0  because of the incompres- 
sibility of the fluid. From these two relations it follows immediately that v o satisfies Laplace's 
equation. In view of the above the remainder of (3.2) is : 

Ov 1 1 # 
- -  + ( v o ' V ) v ~ + ( v l " V ) v o + ( v a ' V ) v l  + - Vp - - AVl = 0". (3.4) 
~t p p 

~ stibul.i 

~ "scaLa tympani 

Figure 2. 
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Consider Fig. 2, which represents the uncoiled cochlea. The coordinate system is chosen in such 
a way that the z-axis is perpendicular to the plane of the partition (z = 0) ; the x- and y-axis are 
located in this plane, in axial and lateral direction respectively. We are as usual merely interested 
in the phenomena in the neighbourhood of the membrane. The only boundary layer that will 
be considered is hence the one along the z = 0 plane. In this layer the velocity u 1 is much larger 
than Vx and wl and moreover the z-derivative of the perturbed quantities (rl, pl) far exceeds 
the other two in magnitude. For a more precise description we refer to [14]. 

As a result of the above, the most important component of (3.4) for our purpose is the axial 
one. Substituting v, the kinematic viscosity, for #/p we can write it as 

0ul Oul ~ul Ou~ ~Uo OUo ~Uo 
~ -  -~- UO ~-X -[- /)0 V -[- WO ~ Z  ~- Igl ~-X -~- /)1 ~yy -[- W1 ~ZZ ~- 

c~ua 0ul 0ua 1 0p, (~2u I 02u, 02u1~ 
+ ul ~ -  + vl ~-y  + w~ ~ -z  + -p --Ox - ~ Ox 2 + --~72 + V?-z~ / = o .  (3.5) 

An estimation of the various terms in this equation has been made in [13]. It is deduced there 
that (3.5) simplifies to 

OU 1 0b/1 ~21A1 
O-t + w~ ~ - v ~ = 0 (3.6) 

with the solution 

�9 f 
U l(x, y, Z; t) ~- Ul,O(X, y, Z; t)~'-10-1CO-�89 ~ - 1  {(VS) -~ z 50{Win( X, Y; t) Ul,O( x' Y, Z; t)} 

0 
sinh [(s/v) �89 (z - 2)] d2} + O (10 -2 co- 1). (3.7) 

Here, 50 {f} is the Laplace transform o f f  with respect to t and 5 ~ 1 {F} the inverse Laplace 
transform of F;  co is 2re times the frequency of the input signal, ~m(x, y; t) is the membrane 
velocity and Ul,o(X, y, z; t) is given by 

f [ t Uo (x, y, 0; r ) ( t -  z) ~ exp dz, (3.8) Ul,o(x, y , z ;  t )= -�89 ~z o 4v -~-z  

in which u 0 (x, y, 0 ; z) is the axial velocity along the partition in case the perilymph is inviscid. 
It can be derived easily from the results of Section 2 that this quantity is linear. Hence the first 
term on the right-hand side is linear; it corresponds to the expression for the axial boundary 
layer velocity that has been found in [14] when harmonic oscillations are regarded. The second 
term is non-linear. It cannot explain on itself the observed non-linearities, however, since it is 
completely insignificant for high frequencies. Even for low frequencies (10 2 < co < 10 3 c.p.s.)  it is 
unlikely to play a part. For the membrane velocity is then considerably smaller than its upper 
bound of 10-2 cm/s, as can be derived from the calculations of [2, 7]. In view of the results of 
the Sections 2 and 3 we state that the effect of non-linear sources within the perilymph is 
negligible. 

4. Non-lincarities within the cochlear duct 

In cochlear models the scala media is usually considered as a single membrane, in accordance 
with the experiments of von B6k6sy [1, 2]. The cochlea can be represented then by Fig. 2 (see 
Section 3). It is assumed generally that the membrane is rigid in the x- and y-directions and that 
its displacement )/(x, y ; t) in the z-direction is determined completely by the pressure difference 
between the scalae. Let be Ps~ (x, y, z; t) and Pst (x, y, z; t) the pressure in the scala vestibuli and 
the scala tympani respectively, and m (x, y), k (x, y) and c (x, y) mass, resistance and stiffness of 
the membrane per unit area. When )/is positive in the positive z-direction the equation of 
motion is given by 

p~,(x, y, 0; 07ps i (x ,  y, 0; t) = 

= m (x, y) ~ z (x, y; t) ~z (x, y; t) 
8t 2 + k(x, y) 8t + c(x, y)z(x, y; t). (4.1) 
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Localization of non-linearities in the cochlea 17 

It is obvious that in this conception only m, k and c can be non-linear sources. It is however not 
possible to gain any insight in the nature of these non-linearities when the cochlear duct is 
regarded as a single structure. Consider therefore a cross-section of the partition, which is 
roughly triangular (Fig. 3). 

B : Basilar  m e m b r a n e  
C : Organ  of Cort i  
E : E n d o l y m p h  
H : Hai r  cells 
R : Reissner ' s  m e m b r a n e  
ST : Scala t y m p a n i  
SV : Scala vestibuli  
T : Tector ia l  m e m b r a n e  

F igure  3. 

The structure of the scala media is too complicated to be conceived in a simple mathematical 
model in which all the various parts are considered separately. Therefore we will take into 
consideration Reissner's membrane, the endolymph and the basilar membrane in the sequel, 
but ignore the organ of Corti, the haircells and the rectorial membrane. The reason for this is 
that we want to investigate above all the effect upon the membrane equation of endolymph 
motion in more than one direction. In relation to this aspect the ignored elements do not bear 
any importance. Another far less severe simplification is that all quantities are averaged over 
the width of the partition. Now the problem is actually two-dimensional (x, z). 

The following y-averaged variables are defined: 
Pe (X, Z ;  t ) :  pressure in the endolymph 
P=v (x; t) pressure on Reissner's membrane in perilymph 
P=t (x; t): pressure on basilar membrane in perilymph 
Ue (X, Z; t): endolymph velocity in x-direction 
we(x, z; t): endolymph velocity in z-direction 
cr : density of the endolymph 
r/: end~ymph viscosity 
r (x, z; t): shear stress in the endolymph 
m s (x): mass of the basilar membrane per unit area 
ks (x) : resistance of the basilar membrane per unit area 
cs(x): stiffness of the basilar membrane per unit area 
Zs (x; t) : displacement (in the z-direction) of the basilar membrane 
m R (x): mass of Reissner's membrane per unit area 
kR (x): resistance of Reissner's membrane per unit area 
c R (x): stiffness of Reissner's membrane per unit area 
•R(x; t): displacement (in the z-direction) of Reissner's membrane. 

We suppose that the basilar membrane is located at z = 0, and that its displacement is negligible 
with respect to the height D (x) of the partition. Reissner's membrane is located at z = D (x); 
the positive z-direction is that from the scala tympani towards the scala vestibuli. 

In view of the foregoing we can represent the cochlear duct as in Fig. 4. The equation of 
continuity is 

0Ue ~W e 
ax + ~ = O. (4.2) 
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reissner's membrane 
windows 

I 
basitar membrane ~ z 

x 

Figure 4. 

Our purpose is a comparison with the original membrane equation (4.1). To this end the 
equilibrium of forces in the x-direction will appear to be irrelevant. We are merely interested in 
that in the z-direction. It is expressed by 

dw e Ope OZ _ 
o- ~ -  + Oz Ox O. (4.3) 

The boundary conditions are 

Ps, (x ; t) - -  Pe (x, 0 ; t) = m B (x) 
02 ZB(X, t) 0ZB(X; t) 

Ot 2 + kB(X) Ot + CB(x)zB(x; t), (4.4) 

Pe (x, D (x); t ) -  p=~, (x ; t) = mR (X) 
02 ZR (x, t) 0ZR (X, t) 

+ kR(X ) -  + CR(X)ZR(X; t). (4.5) Ot 2 Ot 

Here it was assumed that the membranes can move in the z-direction only. This is approximately 
correct since the distance between the membranes varies only slowly with x. Application of the 
relation 

(0We(X, Z; t) 0=e(X, Z ; t)) 
r (x, z; t) = t / \  0x + 0z _ (4.6) 

and integration of (4.3) leads, with the aid of the no-slip condition, to 

pc(x, D(x); t)--pe(X, 0; t) = a dz.  (4.7) 
"= = o 0x2 dt 

Both Ue(X, 0; t) and Ue(X, D(x); t) vanish because of the no-slip condition. 
Besides we note the identities 

OZB(X, t) _ we(x, 0; t) (4.8) 
& 

0ZR (x, t) _ we (x, D (x); t). (4.9) 
& 

From eqs. (4.4)-(4.9) the pressure difference P=t-P=v can be determined" 

p=t(x; t)-p=~,(x ," t) = mB(X ) OWe(X'ot 0; t) + 

I D(x) (OWe(X, Z" ~ t) 
+ a  

~==o \ & 
+ ue(x, z; t) awe(x, z; t) 

Ox 
2V W e(x, Z; t) OWe(X' Z; t) I~ MZ -[- 

Oz / 

+ m R (X) OWe (x, O (x); t) 
& 

fD(x) 02We(X, Z, t) dz + 
-~- kB(X) We(N , 0; t)--t] tz=0 0X 2 

-t- kR(X) We(X,D(x); t)-I-CB(X ) (We(X, O; t)dt+CR(X ) lWe(X,D(x); t)dt. 
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Localization of non-linearities in the cochlea 19 

This is the alternative for the simple membrane equation (4.1). When the horizontal velocity ue 
in the endolymph is equal to zero, it follows from (4.2) that OWe/OZ=O, SO that we(x, z; t) is a 
function we(x; t) of x and t only for all z~ [0, D(x)]. Then (4.10) would simplify to 

pst(x" t ) - p~ (x ;  t )= [mB(x)+aD(x)+mR(x)] OWe(X; t) ' 0 ~  + [kB (X) + k R (x) ] we (x ; t) + 

02we(x; t) f - riD(x ) #x z + [c,(x)+ca(x)] we(x; t)dt. (4.11) 

The principal difference with (4.1) lies in the term ~/D (x) #z we (x ; t)/c3x z, by which the damping 
differs essentially from that in the membrane equation. The other terms match completely. 
Eq. (4.11) seems to be a better way of describing the behaviour of the scala media than eq. (4.1) 
in the case that the endolymph is assumed to move in the z-direction only. 

To obtain an impression of the non-linearities within the partition we return to (4.10). The 
first three terms on the right-hand side refer to mass, the second set of three to resistance, and 
the last two to stiffness. Only one term is clearly non-linear, namely the second which represents 
the inertial force due to the mass of the endolymph. One term is essentially linear, viz. the fifth 
which represents the damping due to the internal friction of the endolymph. The other terms 
are linear only when the coefficients m, k and c are linear. Non-linearities in these quantities 
would imply that they are dependent on the velocity; this is very unlikely to be the case for mB 
and m R, whilst moreover these masses are negligible with respect to that of the endolymph. 

The resistance of Reissner's membrane and of the basilar membrane are, though possibly 
non-linear, small as compared with the internal friction of the endolymph as a consequence 
of the viscosity [-2, 4]. On account of this, the damping of the partition can be looked upon as 
linear. 

Von Bhkhsy [1, 2] has investigated the stiffness of the cochlear partition. He found that with 
increasing amplitude of vibration the stiffness also increases, whereas the phase difference 
between the stapes and the point of measurement decreases, that is, the wave length becomes 
larger, the maximum amplitude becomes less peaked and relatively smaller and the pattern of 
vibration is displaced towards the helicotrema. Thus the non-linear phenomena observed by 
Rhode [9] seem to be explained; Von B4k6sy, however, proved that the deviation from the 
linear character appears only with an amplitude of vibration which lies above the threshold of 
feeling in normal hearing. Hence the elasticity of the membrane cannot be a source of non- 
linear events. 

The only non-linear term left after this inquiry is the second term on the right-hand side of 
equation (5.9). It is however obvious that the velocities u e and w e have the same order of 
magnitude; ue is presumably even smaller on account of the no-slip condition on Reissner's 
membrane and on the basilar membrane. Consequently the order of magnitude of the non- 
linearity is at most the same as the similar one in the perilymph. Since the latter was shown to be 
negligible, we must conclude that the present one can be neglected also. It means that neither 
sources within the endolymph nor the mechanical properties (mass, resistance, stiffness) of the 
basilar membrane and Reissner's membrane contribute to the understanding of cochlear 
non-linearity. 

5. Discussion and conclusions 

In the foregoing we have investigated three kinds of non-linearities, namely sources within the 
perilvmDh, sources within the endolymph and the impedances of Reissner's membrane and the 
basilar memlgranc. None of them was found to be significant enough for a satisfactory ex- 
planation of the observed non-linearities. Hence the non-linear effects must have been elimin- 
ated by the simplifications that we made. Four of them were drastic enough to account for the 
elimination; they will be examined in the sequel. 

First, it was assumed a priori that the spiral coiling can be dispensed with. Von B6k6sy [2] 
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states that  this assumption is hardly open to doubt  since the cochlea of  several animals, as for 
instance the anteater, is practically uncoiled. Yet, we consider the assumpt ion premature  
because, as far as known  to the authors,  the experiments f rom which the non-l inear behaviour  
was found were carried out upon animals that do have a spiral coiled cochlea. 

Second, we made the hypothesis that  the impedances of  the windows are linear, especially 
that  of  the oval window. To our  knowledge this linearity has never been questioned before. 
It is however  quite possible that  the oval window impedance is a source of  non-linearity. 
Therefore this quant i ty  deserves more  at tention then it got  so far. 

Third, we supposed that  Reissner's membrane  and the basilar membrane  can move in one 
direction only, viz. perpendicular  to the basilar membrane.  The principal mot ion  of  Reissner's 
membrane  is of  course perpendicular  to the membrane  itself, but  the deviation caused by this 
can be neglected appositely because of the small variat ion in the height of  the cochlear duct. 
The inferred assumption of  rigidity of  the membranes  in their own planes can be defended by 
the fact that  they are h inged (or possibly even clamped) at the edges to a bony  shelf. 

Fourth ,  the tectorial membrane,  the haircells and the organ of  C o r d  were ignored. The 
reason for this simplification was a purely mathemat ical  one;  it was not  supported by any 
physical background.  

Resuming we see that neither sources within the peri lymph or the endolymph nor  the 
impedance or mot ion  in their own planes of Reissner's membrane  and the basilar membrane  
are plausible explanations of the non-l inear phenomena.  Two of  the remaining possible non-  
linear sources, the oval window impedance and the spiral coiling, are as yet insufficiently 
investigated. Therefore we cannot  draw any conclusions concerning their significance. The last 
possibility has been investigated by Steele [11].  He suggests that  the outer  lip of  the tectorial 
membrane  is an impor tan t  source of  non-linearity. The reason is that  the lip is very flexible 
while the central port ion of the membrane  is stiff. As a consequence of  this a non-linear valving 
action takes place by which a directed flow of the sub-rectorial membrane  fluid against the 
inner hair cells is established. In view of our  results we endorse this suggestion. 

REFERENCES 

[1] G. von Bek6sy, The variation of phase along the basilar membrane with sinusoidal vibrations, J. Acoust. Soc. 
Am., 19 (1947) 452~460. 

[2] G. von B6k6sy, Experiments in hearing, McGraw Hill Book Company Inc., New York (1960). 
[-3] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Oxford University Press (1959). 
[-4] H. Fletcher, On the dynamics of the cochlea, J. Acoust. Soc. Am., 23 (1951) 637-645. 
[-5] C. D. Geisler and A. E. Hubbard, New boundary conditions for the Peterson-Bogert model of the cochlea, 

J. Aeoust. Soe. Am., 52 (1972) 1629-1634. 
[6] J. L. Goldstein, Auditory non-linearity, J. Acoust. Soc. Am., 41 (1967) 676~689. 
[-7] A. E. Hubbard and C. D. Geisler, A hybrid computer model of the cochlear partition, J. Acoust. Soe. Am., 51 

(1972) 1895-1903. 
[-8] L. C. Peterson and B. P. Bogert, A dynamical theory of the cochlea, J. Aeoust. Soc. Am., 22 (1950) 369-381. 
[-9] W. S. Rhode, Observations of the vibration of the basilar membrane in squirrel monkeys using the M6ssbauer 

technique, J. Aeoust. Soe. Am., 49 (1971) 1218-1231. 
[-10] W. M. Siebert, Paradoxical waves, bone conduction and cochlear models, Quart. Prog. Rep. No. 100, Res. Lab. 

of Electron M I T  (1971). 
[-11] C. R. Steele, A possibility for subtectorial membrane fluid motion, Symposium on basic mechanics in hearing, 

Stockholm (1972). 
[12] C. R. Steele, Cochlear mechanics, To appear in the Handbook of Sensory Physiology, Vol. 5, W. D. Keidel and 

W. D. Neff, Eds., Springer Berlin. 
[13] M. A. Viergever, Non-linearities within the perilymph, Delft Progress Report, Series F, 1 (1974) 29-36. 
[14] M.A. Viergever and J. J. Kalker, On the adequacy of the Peterson-Bogert model and on the effects of viscosity 

in cochlear dynamics, J. Eng. Math., 8 (1974) 149-156. 

Journal of Engineering Math., Vol. 9 (1975) 11-20 


